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I Challenges and Opportunities in Multilingual Evaluation

Language Diversity in NLP

e There are more than 7,000 languages spoken around the world
e In NLP research, models are typically developed to work
well only for English
e Two big implications:
o Lack of technological inclusion of more than 3 billion
speakers

o  Overfitting to English http://langscape.umd.edu/map.php
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I Challenges and Opportunities in Multilingual Evaluation

Translation-based Bias

Many multilingual datasets (XNLI, XQuAD, PAWS-X, etc)

Context paragraph w/ answer spans

Questions

are based on translations e

“Translationese”: translations differ in many aspects from
natural language [Volansky et al.,, 2015]
Inherits artefacts from existing datasets

The heat required for boiling the water and supplying
the steam can be derived from various sources, most
commonly from [burning combustible materials];
with an appropriate supply of air in a closed space
(called variously [combustion chamber]s, firebox). In
some cases the heat source is a nuclear reactor, geother-
mal energy, [solar]; energy or waste heat from an inter-
nal combustion engine or industrial process. In the case
of model or toy steam engines, the heat source can be
an [electric]y heating element.

IS

. What is the usual source of heat for boiling water

in the steam engine?

. Aside from firebox, what is another name for the

space in which combustible material is burned in
the engine?

. Along with nuclear, geothermal and internal com-

bustion engine waste heat, what sort of energy
might supply the heat for a steam engine?

. What type of heating element is often used in toy

steam engines?

es

o Train-test overlap for answers in NQ [Lewis et al., 2020]
Language-specific replications may improve upon
annotation methodology [\Watarai & Tsuchiya, 2020]

L eads to new artefacts

@)

El calor necesario para hervir el agua y suministrar el
vapor puede derivarse de varias fuentes, generalmente
de [la quema de materiales combustibles]; con un
suministro adecuado de aire en un espacio cerrado (Ila-
mado de varias maneras: [cdmara de combustién]s,
chimenea...). En algunos casos la fuente de calor es un
reactor nuclear, energia geotérmica, [energia solar]s o
calor residual de un motor de combustién interna o pro-
ceso industrial. En el caso de modelos o motores de
vapor de juguete, la fuente de calor puede ser un calen-
tador [eléctrico]s.

w

. (Cudl es la fuente de calor habitual para hacer

hervir el agua en la maquina de vapor?

. Aparte de cdmara de combustion, ;qué otro nom-

bre que se le da al espacio en el que se quema el
material combustible en ¢l motor?

. Junto con el calor residual de la energia nuclear,

geotérmica y de los motores de combustion in-
terna, ¢qué tipo de energia podria suministrar el
calor para una maquina de vapor?

. ¢Qué tipo de elemento calefactor se utiliza a

menudo en las mdquinas de vapor de juguete?

Bias towards models trained on translations in XNLI 2
[Artetxe et al., 2020]
Translated text is different from text “naturally” generated
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text by speakers of different languages
— English and Western-centric bias

English examples in SQUAD and translations
in XQUAD [Artetxe et al., 2020]
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I Challenges and Opportunities in Multilingual Evaluation

. . . Safie NQ QB SQuAD TriviaQA
-— Train Dev Train Dev Train Dev Train Dev
E n g I I S h a n d WeSte r n Ce nt r I C B I a S us 59.62 58.66 29.70 2628 32.74 24.93 31.32 3091
> UK 1576 1578 17.92 17.68 19.66 16.83 4192 4132
g France 1.79 118 10.06 1034 776 1057 437 484
e Crowd-sourced content is biased towards an English and S Gy 19 21 72 6n am e 30 300

.. . Nocountry ~ 482 436 712 679 348 256 619 610
Western-centric viewpoint

Coverage (% of examples) of countries
e Cultures differ in what type of content is relevant to them across examples with people in QA

o  Speakers outside the US probably don't care about famous _ datasets [Gor et al, 2021]
American football and baseball players ' oL ;

o In COPA [Roemmele et al., 2011], many referents have no

language-specific terms in some languages, e.g. bowling ball,
hamburger, lottery [Ponti et al., 2020]

(2) B® UL tssaMey eesiMler Bewtie MiGd GoMuL L LoEhesit & evL

i i H Selba aTTTs6T SreveTen HLSH@GHD Uailile FEGUUL tghlL-
o  Concepts in ImageNet are Western-centric [Liu et al., 2021] i - o~

g siten(pydmg). (“In one of the two photos, more than two

. . . yellow-shirted players are seen engaged in bull taming.”). Label:
o Commonsense knowledge, social norms, taboo topics, social TRUE.
distance, etc are culture-dependent [Thomas, 1983] ATamil example in MaRVL [Liu et al., 2021]

/- -LIg{INA Create datasets that capture knowledge and information natively in different languages
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I Challenges and Opportunities in Multilingual Evaluation

Scaling to Many Languages

e Labelled data for evaluation is only available
in a small number of languages

e Annotation or generation of data in many
languages is expensive

Labeled data (log)
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103 104 105
Unlabeled data (log)

106 107

Distribution of resources across languages [Joshi et al., 2020]
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I Challenges and Opportunities in Multilingual Evaluation

Scaling to Many Languages

e Labelled data for evaluation is only available
in a small number of languages

e Annotation or generation of data in many
languages is expensive

e How can we fill in the gaps and efficiently assess

performance in many languages?

e Translation is comparatively cheap but introduces

biases
e Alternatives:

(@)

(@)

(@)

Generate targeted evaluation datasets
Create few-shot datasets
Cross-lingual performance prediction

Language

UD-POS NER XNLI XCOPA XQuAD MLQA TyDiQA Tatoeba Mewsli-X LaReQA
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[Ruder et al., 2021]
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I Challenges and Opportunities in Multilingual Evaluation

Creating Targeted Evaluation Data

] . . Jobvs  Animalvs Animalvs
Lang.  Comparisons Intensifiers ~Properties .o ey Vehicles  Vehicles 2

e Create template-based test cases, e.g. using CheckList [Ribeiro et al., 2020]

e A small number of templates can cover many different model capabilities

e Scaling across languages still requires native speaker expertise or
translation

e So far have been used for evaluating reading comprehension [Ruder et al,
2021] and closed-book QA [Jiang et al., 2020; Kassner et al., 2021]

Test Template Generated test oy

; {first_name} is {adj [0]} than {first_namel}. C: Ben is smaller than Frank. =

Comparisons . . . &

Who is less {adj [1]}? Q: Who is less small? @

Intensifiecs opoh Wpa {first_name} {state} {very} .tp™Y Wwpa {first_namel} {state} .UpMI5? WP M2 MW PRY? UPMIDY WP MW FRIAY :C {:

20p10% Wpa {state} MAp DA M 2P0 Wp2 AP MIND °31 1 :Q i

Properties .{attribute2}s {attributel} s {[obj[1} Al A {[obj[0} = .@‘»Jdﬁ-b)kih"&),.'«ijdluihh‘_',)_,»_,g;c i

¢{[obj[1} » {property2} ailall 35 54 JS2 g :Q M

Job vs {first_name} 9¥&A {profession} 99 {nationality}l C: oIfei 9Few SRES 972 Bl ‘;E
Nationality ~ (first name)} 97 SHORTSt F1? Q: TfeIT a7 SrSiet F? RN 264 s

Templates and generated tests for different capabilities in English, Hebrew, Arabic, and Bengali (top) and Multilingual CheckList evaluation of
XLM-R (right) [Ruder et al., 2021] Google Research



I Challenges and Opportunities in Multilingual Evaluation

Creating Targeted Evaluation Data

e Create template-based test cases, e.g. using CheckList [Ribeiro et al., 2020]

e A small number of templates can cover many different model capabilities

e Scaling across languages still requires native speaker expertise or
translation

e So far have been used for evaluating reading comprehension [Ruder et al,
2021] and closed-book QA [Jiang et al., 2020; Kassner et al., 2021]

o/ -LIg{ILINA Create targeted evaluation datasets in many languages
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Opportunity:

I Challenges and Opportunities in Multilingual Evaluation

Few-shot Learning

e For many tasks, fine-tuning on a small number of examples
can significantly improve performance in the target language
[Hu et al., 2020; Hedderich et al., 2020; Lauscher et al., 2020]
compared to zero-shot transfer

e Fine-tuning on many languages is better than on a few, with the
same number of examples [Debnath et al., 2021]

e Caveat: More examples are needed for more challenging tasks
[Kirstain et al., 2021]

Metric

100
90 1

80 A

70 4

60 1

50 1

40 -

zh fi he  hi it ja ko ru sv tr
Language

ar eu

Dependency parsing results across different
numbers of examples [Lauscher et al., 2020]

Focus on creating small training datasets with larger test sets in many languages

Google Research



I Challenges and Opportunities in Multilingual Evaluation

Cross-lingual Performance Prediction

e Instead of creating labelled data, extrapolate performance to
languages without data [Ye et al., 2021]

e Evaluating models on many languages is expensive; could save
costs by only evaluating on a representative subset of languages
[Xia et al., 2020]

e Could also inform on which languages to focus annotation efforts

e Performance prediction methods have been evaluated on
languages in existing datasets such as UD

e Chicken-and-egg problem: need labelled data in order to evaluate
benefit of performance prediction for unseen languages

-4 -2 0 2 4
Density of WALS typological features of the
world’s languages. Red dots are languages

in UD [Ponti et al., 2021]

o/ [-LIg{ILINA Develop performance prediction methods that generalize to unseen languages with different linguistic characteristics
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I Challenges and Opportunities in Multilingual Evaluation

Participatory Research
e Inorder to create high-quality, naturalistic data in \\f""w/
under-represented languages, we need to work with language i
communities directly |
e Involvement of native speakers is beneficial beyond annotation: J’ﬁﬂﬂ =
o Ensures that a task formulation is realistic and R SN S ﬁm\L
beneficial for a language community \ “°“’
o Prevents biases, e.g., a Western-centric viewpoint Lo R 4
o Enables covering language varieties such as dialects or X\ fvm“ e T
Lromnmens 0w T K e
different styles e
o See also Steven Bird’s EMNLP 2021 keynote talk Different stakeholders involved in the MT
process [V et al., 2020]

Participatory research with grassroots communities such as Masakhane

Opportunity:

Google Research
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Evaluation Setting

a  Evaluation Protocol

b Evaluation Metrics
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I Challenges and Opportunities in Multilingual Evaluation

Evaluation Protocol

e Forcross-lingual transfer, there is a bias towards the source language (often English)
o Favours languages similar to the source language
o  Other source languages often perform better [Lin et al.,, 2019; Anastasopoulos & Neubig, 2020;
Turc et al.,, 2021]
e Training on translations helps particularly for some translated tests sets such as XNLI [Artetxe et al,
2020]
[ J

Evaluation across many source languages enables a more fine-grained evaluation (but is also more
expensive)

Opportunity:

Consider the evaluation protocol and associated biases

15
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I Challenges and Opportunities in Multilingual Evaluation

Evaluation Metrics

e Token-based metrics (e.g., F1, EM in QA tasks) are not appropriate for languages without
whitespace separation (e.g. Japanese, Thai, Chinese)

e Require a language-specific segmentation method, which introduces a dependence on the
evaluation

e Metrics based on string matching such as BLEU are not appropriate for morphologically rich

languages

English:
Her village is large.
Translations in Shipibo (spoken in Peru) [Valenzuela, 2003]:

Jawen jemara  aniiki.
Jawen jemaronki ani iki.

16 Credit: Rachael Tatman  Google Research



I Challenges and Opportunities in Multilingual Evaluation

Evaluation Metrics

e Token-based metrics (e.g., F1, EM in QA tasks) are not appropriate for languages without
whitespace separation (e.g. Japanese, Thai, Chinese)

e Require a language-specific segmentation method, which introduces a dependence on the
evaluation

e Metrics based on string matching such as BLEU are not appropriate for morphologically rich
languages

Opportunity:

Consider the bias of your evaluation metric; use character-level evaluation, e.g. chrF [Popovi¢, 2015]

17 Google Research



I Challenges and Opportunities in Multilingual Evaluation

Aggregating Evaluation Metrics ..

e Averaging performance only over
languages in existing datasets provides a
distorted view of progress

e Most languages in existing datasets are
high-resource

e |f we consider all languages of the world
or languages with large speaker
populations, the outlook is much more
pessimistic [Blasi et al., 2021]

0.75

o
o
o

Linguistic global utility M,

User-facing tasks  Linguistic tasks Counterfactual

. 025 ... 050 0.75 1.00
Demographic global utility M,

Linguistic vs demographic global utility of
different NLP applications [Blasi et al., 2021]

o/ LI VLA Be cautious with aggregating performance; highlight performance on different language families, etc
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I Challenges and Opportunities in Multilingual Evaluation

Languages are diverse, not only linguistically but culturally

English Fascinating language!
...but no credit!

Arabic i En EZN
Bengali HEUT HeT (A© (PN
Finnish jalleenrakennustaoihin

Kiswahili inayozungumzwa katika

Korean 2l 2SIt BtS0idte= m Bengali
Indonesian kecilkecilan

Japanese 24K TOY—FvkEEIH

Russian MUKPOCKOMUYECKNI m !

Telugu DoTeeS” 9B
Thai L%aﬁoma%ﬂ'imﬁﬂaa'\ﬁﬂ 75

i
=,

i Indonesian

Credit: Jon Clark  Google Research



I Challenges and Opportunities in Multilingual Evaluation

Takeaways

e Be aware of biases in existing multilingual datasets
e Aim to create datasets that depart from a Western-centric viewpoint
e To scale evaluation to many languages, we can...
o Create targeted evaluation datasets
o Create small datasets across many languages for few-shot learning
o Develop better cross-lingual performance prediction methods
e Participatory research with native speaker communities can help to generate more high-quality,
naturalistic data on tasks that native speakers care about

e (Consider biases in the evaluation protocol and in the evaluation metric

e Be cautious with aggregating performance
e Highlight performance across different language families and geographies

20 Google Research



Thank You
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