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Evaluation in Medicine

▪ Focus on high-quality expensive evaluations of 

clinical outcomes (RCTs)

▪ Sometimes can use cheaper/quicker surrogate 

endpoints for clinical outcome

» Eg, viral load instead of mortality

» Much quicker/easier to measure

» Only use if high correlation with clinical outcome

» Best studies avoid surrogate, use clinical outcomes
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Evaluation in NLP

▪ Dominated by metrics (BLEU, etc)

» Metrics are surrogate endpoints

» Used even if limited corr with human eval

» Used everywhere, including top studies

▪ Human evaluations often limited

» Random crowdworkers as subjects

» Measure opinion rather than task outcome

▪ Need more high-quality human evals

» Analogous to RCT in medicine?
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BLEU-human corr in NLG

▪ Meta-analysis across papers in ACL 

Anthology   (Reiter 2018)
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Human eval: subjects

▪ Most human evaluations in NLP use 

crowdworkers (eg Mechanical Turk)

▪ Freitag et al (2021): WMT human evals 

(based on monolingual crowdworkers) 

do NOT correlate well with structured 

evaluations by professional translators.
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Human eval: opinion vs outcome

▪ Most human evaluations in NLG solicit 

ratings or opinions

▪ Usually what we really care about is 

whether NLP system helps people

» Task outcome (extrinsic eval)

▪ Rating/opinions may NOT correlate with 

task effectiveness

» Eg Law et al (2005)
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Vision: High Qual Human Eval

▪ Do high-quality human eval of NLP

» Subjects with domain knowledge

» Objective/task outcome instead of opinion

▪ Use these for key experiments

▪ Use these to ground/validate metrics 

and cheaper human evals
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Smoking cessation

▪ NLG system generated stop-smoking 

leaflets based on user questionnaire

▪ Evaluated in medical-grade RCT 

» 2500 subjects!

▪ Result: Simple fixed letter as effective 

as NLG letters

▪ Reiter et al (2003)
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Clinical Decision Support

▪ NLG system summarized patient data 

for babies in neonatal ICU, to help 

clinicians decide on interventions

▪ Evaluation

» show clinicians NLG sum and visualisations

» asking them to make treatment decisions

» Compare decisions against gold stand

▪ Result: small diff, not stat significant

▪ Portet et al (2009)
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Nursing Shift Handover

▪ NLG system generated nurse shift 

handover rep, for NICU babies

▪ Eval:

» System deployed, used on ward

» Researcher vets texts for errors

» Nurses say whether test useful

▪ Result: No serious errors, useful

▪ Hunter et al (2012)
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Evaluating Accuracy

▪ Accuracy (hallucination) is big problem

» Especially in neural NLG

» Especially in longer texts

▪ Users expect NLG texts to be accurate!

» Lose trust if sys produces inaccurate texts

▪ How do we evaluate accuracy?

▪ Part of Craig Thomson’s PhD
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Craig’s work

▪ Accuracy of summaries of basketball 

games

» Produced from “box score” game data

» 300 words on average



Dr. Ehud Reiter, Computing Science, University of Aberdeen 16

Team & Player Data

TEAM W L H1-PTS H2-PTS PTS FG%

Grizzlies 5 0 46 56 102 .486

Suns 3 2 52 39 91 .559

Player TEAM PTS REB AST BLK STL

Marc Gasol Grizzlies 18 5 6 0 4

Isaiah 

Thomas

Suns 15 1 2 0 1
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Partial game summary

The Memphis Grizzlies (5-2) defeated the Phoenix 

Suns (3-2) Monday 102-91 at the Talking Stick 

Resort Arena in Phoenix. The Grizzlies had a strong 

first half where they out-scored the Suns 59-42. 

Marc Gasol scored 18 points, leading the Grizzlies. 

Isaiah Thomas added 15 points, he is averaging 19 

points on the season so far.
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Partial summary with errors

The Memphis Grizzlies (5-2) defeated the Phoenix 

Suns (3-2) Monday 102-91 at the Talking Stick 

Resort Arena in Phoenix. The Grizzlies had a 

strong first half where they out-scored the Suns 

59-42. Marc Gasol scored 18 points, leading the 

Grizzlies. Isaiah Thomas added 15 points, he is 

averaging 19 points on the season so far.
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Mistake categories

Name Player, Team, day of week, etc.

Number Number, in any form.

Word Word or phrase that is not 

Name/Number.

Context Something that is contextually wrong.

Not 

Checkable

Impossible/time-consuming to check.

Other Any other error.
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Gold standard protocol

▪ High-quality human eval to find mistakes

» Thomson and Reiter (2020)

▪ Subjects

» Selected Mechanical Turk workers

» Know basketball, do well on vetting task

▪ Task

» Find and categorise mistakes

» More objective than 1-5 accuracy rating



Dr. Ehud Reiter, Computing Science, University of Aberdeen 21

Gold standard protocol

▪ Procedure

» 3 Turkers annotate each text

» Researcher combines (majority opinion)

▪ Process worked

» High interannotator agreement

» Various checks, including with domain experts

▪ Expensive

» US$30 for each 300-word summary
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Cheaper Eval: Shared Task

▪ Created shared task to find cheaper and 

quicker techniques

» Should correlate with gold standard

▪ Cheaper human eval

▪ Metrics

▪ Thomson and Reiter (2021)
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Quicker Human Eval

▪ Garneau and Lamontagne (2021): 

quicker and cheaper human eval

» Used metric to pre-annotate simple 

mistakes (not complex ones)

» Significant reduction in time/cost

» High agreement with gold stand

– Recall of .84

– Precision of .88
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Metrics

▪ Kasner et al (2021) proposed metric

» Generate synthetic data with rule-based NLG

» Train language model to detect errors (using 

real and synthetic data)

▪ Works well for simpler errors

▪ Not great for complex errors



Dr. Ehud Reiter, Computing Science, University of Aberdeen 25

Kasner et al metric

Type Recall Precision

Name 0.75 0.85

Number 0.78 0.75

Word 0.51 0.48

Context 0 --

Not checkable 0 --

Other 0 --

Overall 0.69 0.76
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Summary

▪ Identify area where good eval needed

» Evaluating accuracy is very important

▪ Created gold-standard human eval

» US$30 per text (expensive)

▪ Used gold standard to development 

metrics and cheaper human eval
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Evaluating Utility

▪ How evaluate if generated texts help 

users do tasks better or more quickly?

» Depends on task (and user)

▪ Part of Francesco Moramarco’s PhD

» Task: summarizing patient-doctor 

consultations

» working with Babylon Health
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Use case

▪ GP (doctor) talks to patient 5-10 mins

» Called “consultation”

▪ Needs to write summary of consultation

» For medical records, patient can see

▪ Currently done by GP

▪ Goal: NLP system gen draft summary

▪ Doctor “post-edits” to fix mistakes
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Example

Consultation

Doctor: Hello? Good morning, Tim. Um, how can I help you this 

morning?

Patient: Um, so I’m having some, some pain, uh, in my tummy, 

like the lower part of my tummy. Um and I’ve just been feeling, 

quite, hot and sweaty.

Doctor: OK. Right, I’m sorry to hear that. When, when did your 

symptoms all start?

Patient: About two days ago. 

Summary

Two days of lower abdominal pain.
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How measure usefulness?

▪ Time spent post-editing NLP summary?

» Compared to time to write from scratch

▪ Quality of post-edited summary?

» determined by experienced clinician

▪ Number of mistakes in NLP summary

▪ Doctor satisfaction?

▪ Impact on workflow?
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Not just averages

▪ Differences between doctors

» Post-editing time (and what is edited)

» Satisfaction

▪ Worst-case as well as average case

» No tolerance for medically misleading 

summaries
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High Quality Human Eval

▪ Developing protocol

▪ Current version

» Doctors write their own summary

» Doctors shown NLP summary

» Doctors post-edit NLP summary to make it 

acceptable

» Measure time to post-edit

» Also identify accuracy problems in NLP
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High Quality Human Eval

▪ Moramarco et al (2021) describes first 

version of protocol

▪ Refined since

» Post-edit UI is critical
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Correlation with exist metrics

▪ Preliminary work, not yet published

▪ Levenshtein (character edit distance) 

better than ROUGE, BertScore, etc

Metric Corr with post-edit time Corr with num error

ROUGE-2 0.38 0.73

METEOR 0.41 0.71

BertScore 0.50 0.74

Levenshtein 0.55 0.76
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Levenshtein is best?

▪ Surprising that Levenstein (character 

level edit distance is best)

▪ Bertscore, etc, mostly justified by corr

with crowdworker opinion (eg, WMT)

» Freitag: Corr between WMT and prof 

translators can be negative…

» Good corr with WMT not guarantee good 

corr with high-quality outcome-based 

human evals!
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Summary

▪ Working towards high quality eval of 

real-world utility

» Work in progress

» Expensive (need lots of doctor time)

▪ Explore which metrics have best corr

» So far 1960s Leven dist beats all of the 

modern metrics used in NLP
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Reproducibility

▪ Scientific experiments (including eval of 

AI systems) should be reproducible!

▪ If someone else does the same exper, 

should get similar results

» Not identical if people are involved

▪ Major concern in many areas of science
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Reproducibility in NLP

▪ Some work on reproducing automatic 

(metric) evals

» Ensure all details published, data sets and 

soft available, preprocessing clear, etc

▪ What about reproducing human eval?

» Poorly understood
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ReproGen: Human NLG Eval

▪ Shared task where people reproduced 

human evaluations of NLG systems

» Belz et al (2021)

▪ Mixed results

» Some reproductions had similar results, 

some did not

» Unclear why (small sample size) (4 replic)
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ReproHum

▪ New EPSRC project on reproducibility 

of human evaluations of NLP

» Will start in early 2022

▪ Much larger scale than ReproGen

» 20 partner labs will reproduce a selected 

set of NLP evaluations

» Identify key factors for replication

» Develop theoretical framework

» Make recommendations
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ReproHum

▪ New partner labs are welcome!

▪ Contact Anya Belz (PI) or me if 

interested
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Final Thoughts

▪ Too much focus on quick/cheap evals in 

NLP!

▪ If we’re doing science (as opposed to 

keeping score in contests), we need 

high-quality human evals

» Ground/validate metrics

» Confidence in key findings
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Final Thoughts

▪ I’d love to see more high-quality human 

evaluations in NLP

▪ Feel free to contact me if I can help!
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